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Structurally nonuniform shells exhibiting regular structure are encountered in various 
branches of engineering. Among these we include thin shells reinforced with a regular skele- 
ton of closely positioned longitudinal or transverse reinforcement ribs (ribbed shells), 
a longitudinal-transverse system of stringers (waffle shells) and three-layered sandwich 
shells filled with a honeycomb structure (honeycomb shells), as well as various mesh and 
skeleton shells and plates. These and similar structurally nonuniform shells are used gener- 
ally under conditions of intermittent heat fields, sharp drops of temperature, and the solu- 
tion of problems of thermal conductivity and thermal elasticity for these structures is 
thus of practical interest. 

The rapid oscillation in the coefficients of the equations and boundary conditions 
for such structural elements makes the problem in its exact formulation virtually unsolvable, 
even with a high-speed computer. This is associated with the need to develop certain approxi- 
mate methods such as, for example, structural-anisotropy approaches. The regular structure 
of these shells makes it possible to resort to the asymptotic method of averaging the peri- 
odic structures in the design of such shells, and based on this method problems in the theory 
of elasticity, thermoconductivity, and thermal elasticity were dealt with in [1-3] for com- 
position materials of regular structure as well as skeleton-structured materials. The aver- 
aging method [i-3] is also suitable for regularly nonuniform media exhibiting periodic struc- 
ture in all three measurements. Structurally nonuniform shells, such as those considered 
in the present study, are neither one-dimensional nor two-dimensional composites (such as 
laminated or fiber materials), nor are they three-dimensional composites (such as granulated 
materials). Periodicity is exhibited only in the two tangential coordinates introduced 
at the middle surface of the shell or skin, with no such periodicity existing in the trans- 
verse coordinate. The limited dimensions of both period and shell thickness are commensurate 
in this case, and both force and heat boundary conditions are specified at the upper and 
lower surfaces of the shell. These features of the structural elements called for special 
(different from that discussed in [I-3]) asymptotic analysis of the corresponding three- 
dimensional problems for a thin layer, which would combine both the asymptotic transition 
from a three-dimensional problem to the two-dimensional problem of a shell and the transi- 
tion (by the averaging method) from a nonuniform (composition) material to the equivalent 
uniform material (quasiuniform). The two-scale asymptotic method in this formulation for 
a plate was first proposed within the framework of the theory of elasticity in [4, 5]. The 
complete asymptotic expansions in the three-dimensional problem in the theory of elasticity 
for a thin plate with a thickness equal to the characteristic dimension of the nonuniformi- 
ties were constructed and validated in [6]. In [7, 8] we find an asymptotic analysis of 
the three-dimensional problem from the theory of elasticity for a thin uniform plate with 
a rapidly oscillating thickness. A rather complete review of the papers devoted to the 
application of the averaging method in the problems of the mechanics of a deformed solid 
can be found in [9]. In [10, ii], within the scope of the theory of elasticity, without 
adopting any simplifying hypotheses, we find the asymptotic transition from the three-dimen- 
sional problem for a distorted regular nonuniform layer with a rapidly oscillating thickness 
to the model of an averaged shell. An analogous analysis has been undertaken in [12] for 
the problem of heat conduction in the case of the conditions of second- or third-kind heat 
exchange at the shell surfaces. A method has been developed in [13] which was applied to 
the quasistatic problem of thermal elasticity. 

In the present paper we generalize the results derived in [10-13], and we present cer- 
tain applications of the general model. In the first part of this study we cover the decisive 
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relationships and the equations of the averaged shell. Its effective thermoelastic and 
thermophysical characteristics are determined from the solution of the auxiliary local prob- 
lems on the periodicity cell. Based on the solution of the local problems and of the boun- 
dary-value problem for an averaged shell with great accuracy the three-dimensional local 
structure of the studied fields is reproduced. Applications are indicated for the general 
model with respect to various structural-nonuniform shells. Based on the solution of the 
local problems, explicit formulas are derived for all effective thermoelastic and thermo- 
physical characteristics of drift, waffle, honeycomb, and mesh shells of regular structure. 

i. Let us examine a nonuniform shell of regular structure exhibiting the periodicity 
cell ~ which, in the orthogonal coordinate system a~, ~2, ~, is given by the inequalities 

--ehJ2<~<eh~/2, --ehJ2<a~<eh2/2, ez-<y<ez +, 

where ~ is the small parameter determining the thickness of the shell (skin); eh~, eh= are 
the distances between the reinforcing elements; z+(y~, Y2) and z-(y~, y~) are periodic func- 
tions of the variables y~ = a~/(eh~), y2 = a~/(sh 2) specifying the shape of the reinforce- 
ments at the upper S + and lower S- surfaces of the shell. We make the following notation: 
z = ~/e, y = (y~, y~), a = (~, ~=). We will assume that the elasticity coefficients 
Cijmn(Y, z), as well as the coefficients of thermal conductivity %ij(Y, z), thermal expan- 
sion ~ij~ z), and similar characteristics of the material are piecewise-smooth periodic 
functions for y~, y~ with the periodicity cell ~: {Yl, Y~ e (-1/2, 1/2), z e (z-, z+)}, 
experiencing discontinuities of the first kind at a finite number of nonintersecting contact 
surfaces. 

Following the method detailed in [10-13], we will present the components of the displace- 
ment vector and the temperature increment in the form of the asymptotic expansions 

~ = ~? ) (~ ,  t) + ~ ? ) ( ~ ,  t, y, ~) + ~ ? )  (~, t, y, ~) + . . . .  
( 1 . 1 )  

o = o 1 + zo2, o~ = o($ ) (~, t) + ~o~ ) (~, t, y, z) + . . . .  

where ui(s t, y, z), @v(s t, y, z) for s = i, 2 ..... v = i, 2 are the functions 
periodic for y~, Y2 with the periodicity cell ~. 

It has been demonstrated in [10-13] that for the principal terms in (i.I) and in the 
corresponding expansions over e for the components of the stress tensor and the heat-flex 
vector the relationships determining their local structure are valid: 

2 ~ ' * ~  V .4_+. z 0w(~,t) + ~ U ~ o ) ~ + e u  1 ~ + 0 ( ~  3) (i  2), ( 1 . 2 )  tt I = t~ 1 (o~, t) - -  e A1 a% 

_- ~ ~ U ~  0 (~3), u 8 w ((z, t) + eU3 o)~ + + 

(o) ( t oo(~ ~ oo(~ _ , 1  2 .  o(+~); o = o? ) (~, t) + ~o~ (~, t) + ~ , w ~  A---; o~--; + ~ ~ - ~ - f )  + 

oij = b ~ * o ~  + eb*~V~.* 0(~ s*9(~ O(e2) ' --s~j i -- ~J ~ + (1.3) 

(o) q~O) A~ 00(1~ �9 1 00(20) 

Here and below, summation is performed over identical indices, with the Latin indices taking 
on values of i, 2, and 3, while the Greek indices take on values of i and 2; A~(~), A2(a) 
are the coefficients of the first quadratic form of the middle surface (7 = 0); m~ = e~, 
~22 = s2, m~2 = ~ = m/2 represent the tensile and shearing strains; ~i~ = <~, x== = ~=, 
x~ = ~2~ = x represent the flexural and torsional strains of the middle surface. These 
functions are expressed in terms of v~, v=, w by means of the familiar relationships from 
the theory of thin shells [ii]. 

The following formulas are valid for the coefficients in relationships (1.3): 

aug~ ou~ ~ 
b~ ~ = h~ r a~--- 7 + ~'J~ - ~ -  + ~'J~' 

b * ~ _ _  i OU*~V OU*V'v 

(1.4) 
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1 OW OW 
~,~ = ~ ~ ~ + ~ ~ + ~ ,  (1.5) 

The f u n c t i o n s  UmVV, Um*PV, V m, Vm*, Wp, and Np*, c o n t a i n e d  in r e l a t i o n s h i p s  ( 1 . 2 ) - ( 1 . 5 ) ,  
depend on ~ = Azy z, ~2 = Azy z, and z. With r e s p e c t  to  ~ ,  r t hey  a re  p e r i o d i c  s o l u t i o n s  
(with the periods Az, Ai, respectively) of the following local problems on the periodicity 
cell: 

t 0 ~ O b ~ = O ,  

N:~b~; + N~. ~ ~.41 = 0 , ~ +-~ s~ 
�9 ~ ~3 ] z=z" 4_ 

I Ol~ Ol~ 
h~ 0 ~  + ~ = O, 

l + 

(1.6) 

(1.7) 

[Ni -+ is the component normal to the surfaces z = z+(y)]. 

At the material characteristic discontinuity surfaces we find fulfillment of the con- 
tinuity conditions which correspond to ideal contact (n i is the component normal to the 
discontinuity surface) : 

[ n~ b ~ +  n~b~] = 0 [ u ~  ~ 1 = o ,  E 
( v ~  ~ ~ v*~ ~ ~ v ~  ~ v * ,  b~ ~ ~ b~? ~ ~ ~ j  ~ s~);  

(i.s) 

( 1 . 9 )  

Local problems (1.4), (1.6), (1.8) and (1.5), (1.7), (1.9) have single solutions accu- 
rate to the constant terms. This nonuniqueness is removed by imposition of the conditions 

< v ~ > ~  = o o~ ~, = o 

( V ~ . ~ V ~ . V  . V m + + V ~ + ~ . W  .~.~W~).  (1 .10)  

The subscript ~ indicates integration over the coordinates ~i, $2. 

Averaging relationships (1.3) by means of integration over the volume fl, we obtain 
(r = 0.I) 

- <z~s~j> 0~ ~ ~ * 07 ) - (~ s~j> + o (~); 

t ao?) t ao~) 
<~q~o)> = _ <~z~> A~ ~ <~%> A~ o~" 

(1.12) 

Relationships (i.ii) and (1.12) represent the equations of state for the averaged shell, 
while the coefficients of these relationships represent its effective thermoelastic and 
thermophysical characteristics. In this case, on the basis of (1.4)-(1.10), it has been 
demonstrated that 

<b3, > = 0, <zby> = 0 (b3i -- b,, ~ s~, - s~,-- 13~- ,~), (1.13) 
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Fig. i 

Relationships (1.13) provide for the symmetry of the matrices comprised of the coefficients 
of the equations of state for the averaged shell. 

Systems of resolving equations have been derived in [10-13] for the functions vi, v 2, 
w and 01 (o) , 82 (0) . Let us note that, as demonstrated in [11-13], in the case of a uni- 
form material and with constant shell thickness (z • = • the averaged model reduces to 
the relationships taken from the theory of the thermoelasticity of anisotropic shells, with 
the following formulas valid for the linear forces, the moments, and the integral temperature 
characteristics: 

N 1 = 8 <fill>, ]~1 ~ 82 <Z~II> (1 "(--~2), 
N , 2 = e < o ~ > ,  M 1 2 = c  2<z~1~>, T = 0 7  ), T * = 0 ~ ) / 2 .  

L e t  us  d w e l l  i n  some d e t a i l  on c e r t a i n  a p p l i c a t i o n s  o f  t h e  g e n e r a l  model  t o  t h e  d e s i g n  
o f  s t r u c t u r a l - n o n u n i f o r m  s h e l l s  o f  r e g u l a r  s t r u c t u r e ,  t h e s e  h a v i n g  been  f a b r i c a t e d  o u t  o f  
a u n i f o r m  i s o t r o p i c  m a t e r i a l .  

2. L e t  us  examine  t h e  w a f f l e  s h e l l  w i t h  a p e r i o d i c i t y  c e l l  c o n s i s t i n g  o f  t h r e e  m u t u a l -  
l y  p e r p e n d i c u l a r  e l e m e n t s  ( F i g .  1 ) .  The a p p r o x i m a t e  a n a l y t i c a l  s o l u t i o n  o f  l o c a l  p r o b l e m s  
( 1 . 4 ) - ( 1 . 1 0 )  f o r  a c e l l  o f  t h e  i n d i c a t e d  fo rm can  be found  in  t h e  a s s u m p t i o n  t h a t  t h e  t h i c k -  
n e s s  o f  each  o f  t h e  c e l l  e l e m e n t s  i s  s m a l l  in  c o m p a r i s o n  t o  t h e  o t h e r  d i m e n s i o n s ,  i . e . ,  
unde r  t h e  c o n d i t i o n s  t i ( h i ,  t 2 ~ h 2, h l ,  h 2 - H. 

The a p p r o x i m a t i o n  method f o r  t h e  p r o b l e m s  in  t h e  t h e o r y  o f  t h e r m o e l a s t i c i t y  which  i n -  
v o l v e s  p r o b l e m s  f rom t h e  t h e o r y  o f  p l a t e s  and s h e l l s ,  such  as  t h a t  u s e d  in  t h e  s o l u t i o n  
o f  l o c a l  p r o b l e m s  ( 1 . 4 ) - ( 1 . 1 0 ) ,  was p r o p o s e d  and v e r i f i e d  in  [14 ,  15] in  d e t e r m i n i n g  t h e  
effective characteristics of the small-cell skeletal constructions of periodic structure. 
In combination with the above-described general model of an averaged shell, this method 
makes it possible to obtain in explicit form and with adequate accuracy the effective char- 
acteristics for a large number of reinforced shells, such as those used in actual practice. 
In this case, for all effective characteristics different from zero and contained in the 
equations of state (i.ii) and (1.12), with consideration of relationships (1.13), we will 

<bn>= '' __E +EFt, <b~g>= E +EF.  
i -- v 2 

<b11>= E~ <biD= E ,__ ~2' 2 ( - - ~ '  <bill> = ES2 '  <b:22'> = ESI' 

.E E *11 Ev 
<~~'> = ,2 (, - :) + E:,. <~b;~> = ,2 (,- :--------) + E:,, <~b.,.~ > = ,~(, _~---------), 

(~b210 ;  24 (, + ,) t + N + N - K ~ -  K~ , 

obtain 

(2.1) 
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Ecz 0 Ecz 0 + Ecz~ 1, 
<sl'> --  t --  ~ + Ecz~ <s~> = t - -  

< 4 5 :  E os , E os , 
Ecr 0 , Ecr 0 

<zs~l> = 12 ( 1 -  ~-------~ + E(z~ <zs22>- t2 ( t -  v--) + E(Z~ 

I* </,i> = ~' + ~ F ~ ,  </22> = ~ + XFx,  </~,> = ;<$2, < ',~> = i S ~ ,  

t + - h - ~ ' l  + t 2 J ~ - - K 1  , 

* ~,( t~ Ha ) 
(z/~>=Tff l+~+12ar~--K s , 

96H 4 ~ [I--(--I) n] ~nA1tl 
Here K I = ~"n=1 n5 th ~ (I++2); E, v, ~, a 0 are the characteristics of the material; 

FI, F 2 are the cross-sectional areas; SI, S 2 are the static moments; J1, J2 are the inertial 
moments of the cross sections of the reinforcement elements ~i, ~2 relative to the middle 
surface of the skin (z = 0), calculated in the coordinate system Yl, Y2, z. For these the 
following formulas are valid (see Fig. i): 

tlH t l (HS@H) tl(4HS@6H2@3H) (t ++ 2). ( 2 . 2 )  
F1 : h I ' S1 = 2h I , ]1  : 12hl 

F o r m u l a s  ( 2 . 1 )  and  ( 2 . 2 )  f o r  t h e  e f f e c t i v e  r i g i d i t y  m o d u l i  ( t h e  e l a s t i c  p o r t i o n  o f  
t h e  c h a r a c t e r i s t i c s )  a r e  i n  good a g r e e m e n t  w i t h  t h e  f a m i l i a r  r e l a t i o n s h i p s  f r o m  t h e  s t r u c -  
t u r a l - a n i s o t r o p i c  t h e o r y  o f  r e i n f o r c e d  p l a t e s .  The f o r m u l a  f o r  t o r s i o n a l  r i g i d i t y  <zb12"12> 
i s  b e y o n d  t h e  s c o p e  o f  t h i s  t h e o r y ,  a c c o r d i n g  t o  w h i c h  t h e  f o l l o w i n g  i s  a s s u m e d :  

E ( (2.3) < = 24 (, + , )  + H + H ]" 

The c o r r e c t i o n  f a c t o r s  f o r  f o r m u l a s  ( 2 . 1 )  i n  c o m p a r i s o n  w i t h  ( 2 . 3 )  a r e  s i g n i f i c a n t  i n  t h e  
c a s e  o f  h i g h  r i g i d i t y  r i b s .  F o r  e x a m p l e ,  when A 1 = A 2 = l ,  v = 0 . 3 ,  H = 20 ,  h z = h 2 = 60 ,  
t 1 = t 2 = 2 f r o m  ( 2 . 1 )  we h a v e  < z b 1 2 * 1 2 > / E  = 0 . 1 9 2 2  ( a  c o r r e c t i o n  f a c t o r  o f  - 5 . 3 % ) ,  and  
w i t h  H = 10,  h 1 = h 2 = 10,  t z = t 2 = 1 we h a v e  < z b z 2 * z 2 > / E  = 0 . 0 9 2 1  ( a  c o r r e c t i o n  o f  - 4 . 3 % ) .  

To c h e c k  on t h e  e r r o r s  i n  f o r m u l a s  ( 2 . 1 ) ,  we u n d e r t o o k  a more  e x a c t  ( n u m e r i c a l )  s o l u -  
t i o n  o f  l o c a l  p r o b l e m s  ( 1 . 4 ) - ( 1 . 1 0 ) ,  a nd  t h i s  showed t h a t  t h e  e r r o r  i n  f o r m u l a s  ( 2 . 1 )  and  
( 2 . 2 )  ( w i t h  t h e  e x c e p t i o n  o f  t h e  f o r m u l a  f o r  < z b 2 = ' 1 1 > )  a m o u n t s  t o  l e s s  t h a n  1%, a nd  t h e s e  
c a n  t h e r e f o r e  be u s e d  i n  p r a c t i c e  w i t h  an  a c c u r a c y  s u i t a b l e  f o r  t h e  m a j o r i t y  o f  e n g i n e e r i n g  
c a l c u l a t i o n s .  The g r e a t e s t  c o r r e c t i o n  f a c t o r s  w e r e  o b t a i n e d  i n  t h i s  c a s e  f o r  t h e  e f f e c t i v e  
r i g i d i t y  m o d u l i  < b 2 2 * l z >  and  < z b 2 2 " 1 1 > ,  f o r  w h i c h  when v = 0 . 3  i t  f o l l o w s  f r o m  ( 2 . 1 )  t h a t  
< b 2 2 ' ~ >  = 0,  <zb~2*zZ> /E  = 0 . 0 2 7 5 .  F o r  p u r p o s e s  o f  c o m p a r i s o n ,  t h e  r e s u l t s  f rom t h e  n u m e r i -  
c a l  c a l c u l a t i o n  o f  t h e s e  m o d u l i  i n  s e v e n  v a r i a n t s  ( w i t h  v = 0 . 3 )  c a n  be f o u n d  i n  T a b l e  1. 

F o r m u l a s  ( 2 . 1 )  and  ( 2 . 2 )  c a n  be u s e d  t o  d e t e r m i n e  t h e  e f f e c t i v e  c h a r a c t e r i s t i c s  o f  
r i b b e d  s h e l l s .  Fo r  e x a m p l e ,  i n  t h e  c a s e  o f  s t i f f e n i n g  r i b s  d i r e c t e d  a l o n g  t h e  O~ 1 c o o r d i -  
n a t e  l i n e ,  i n  F i g .  1 we s h o u l d  r emove  t h e  r e i n f o r c i n g  e l e m e n t  ~ l ,  w h i l e  i n  f o r m u l a s  ( 2 . 1 )  
we s h o u l d  a s s u m e  t h a t  t z = 0 and  c o r r e s p o n d i n g l y  t h a t  F~ = S 1 = J1 = Kz = 0. 

3. L e t  u s  e x a m i n e  a t h r e e - l a y e r e d  s h e l l  c o n s i s t i n g  o f  u p p e r  a nd  l o w e r  s t r e s s - b e a r i n g  
l a y e r s  and  a honeycomb  f i l l e r  o f  a f o u r - s i d e d s t r u c t u r e  ( F i g .  2 ) .  On t h e  b a s i s  o f  t h e  a p p r o x i -  
m a t e  a n a l y t i c  s o l u t i o n  o f  l o c a l  p r o b l e m s  ( 1 . 4 ) - ( 1 . 1 0 ) ,  o b t a i n e d  i n  a n a l o g y  w i t h  t h e  p r e v i o u s  
c a s e ,  f o r  a l l  e f f e c t i v e  c h a r a c t e r i s t i c s  o f  t h e  honeycomb s h e l l  d i f f e r e n t  f rom z e r o  [ w i t h  
c o n s i d e r a t i o n  o f  r e l a t i o n s h i p s  ( 1 . 1 3 ) ]  we h a v e  

<bl} > 2Eo 2E o 
= - -  + EF 2, <b~>-- -5 EFa, 

2E0v 0 E o 2E oJ 3 t2 Ha 

@Z> '-"o ' +"o' - -  = 2'  < b l i >  = -  < g b l l l l >  = 1--%;02 "j- E.l_2h,2 , 

2EoJ a t 1H s 2EoV o *22 - -  - -  *11 ---------T ]8~ 

(3.i) 
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Fig. 2 Fig. 3 

~ 1r ez2 

I -~ v------o -5 24 (I ~- v~ 

2Eo%0 2Eoao 0 
< s i i > = ~ + E ~ O F . z ,  < s 2 2 > - -  1 - - %  

2Eo%0 t2H8 

* 2E~ Ja + Er162 tlH3 
<zs22> - -  I - -  v o t2h  I ' 

</11> = 2~o + XF2, < / 2 2 >  = 2~o + EF1,  

( tlHa t 2Ha ) 
<~.z~> = 2~oJ. + -~, h~ + ~ -  a l  , 

(~za~> = 2~oJ~ + ~ ~ h~ + ~ 

( Hats Hat2 _ _  K2), --C+-C~ K~-- 

_ _ _  + E o ~ O F  1 ,  

where E0, v0, 10, a0 8 represent the characteristics of the material in the upper and lower 
stress-carrying layers; E, v, X, a@ are the characteristics of the material making up the 
foil of the honeycomb filler; F I, F 2, K I, K 2 have been determined above; J3 = ( 3H2 + 6H + 
4)/12. The first terms in formulas (3.1) represent the contribution of the stress-carrying 
layers, while the second terms represent the contribution made by the honeycomb filler. 

TABLE i 

No.Variant Periodicity cell parameters ~'b*ll'/E22 t {zb22"11 )/E 

H ---- i0,  h 1 = h~ = t0 --0,0648 --0,3705 

t 1 = t 2 = i 

2 H = 10, h I = h a = l0 --0,0432 --0,2378 
t 1 = t ,  t a ~ 0,5 

3 H = i0,  h i ---- h a = 20 --0,0078 --0,0207 
tl = t2 ---- 0,5 

4 H = 8, h 1 ~- h a = 30 --0,0028 0,0i32 
t 1 ---- t~ = 0,8 

5 H = 8, hi = ha ----- 30 - -0 ,00 i9  0,0i80 
t~ = 0,8, t2= 0,4 

6 H = 20, hi  = h~ = 20 --0,0648 --0,7406 
t 1 = t a = 0,5 

7 --0,0277 --0,3030 H----20,  h 1 - = h ~ = 6 0  

t l =  t a =  2 
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4. Let us take a look at the mesh shell of regular structure, formed by N families 
of elliptical sections parallel to each other, and these, in particular, of circular lateral 
cross section. Here ~ denotes the thickness of the shell and ~t represents the angle formed 
by the sections of the i-th family with the coordinate line Oa 1, Ti is the volumetric con- 
tent of the sections in the i-th family in the periodicity cell, e i is the eccentricity 
of the transverse cross section of the sections in the i-th family, and Ei, vi, %i, ai ~ are 
the characteristics of the material in the sections of the i-th family. Figure 3 shows 
the periodicity cell and one of the sections in the i-th family. 

On the basis of an analytical solution of local problems (1.4)-(1.10) for the sections 
forming the mesh, and based on the principle of separation for the averaged operator [i], 
we obtained the following formulas for all of the (different from zero) effective character- 
istics of the mesh shell: 

= = , + 

i = l  ~,=I 
N 

= E = 

N N 

= E = E 
i , = l  ~=i  

(4.1) 

The parameters b i, c i, s i, and s in (4.1), depend on the set of indices ~6~< and 
are determined from the following formulas: 

for ~8~• ---- 1 1 t t  

bi  = A~B~-' cos 4 cpi, ci = 2A~tg  ~ (Pi (1 - -  e~) A~, 
2 2 st = V ~ ,  It ---- [A~ cos=% q- A~A2(t  - -  e~)]Ag (~6 = 11); 

f a r  ~ . •  = 2222 

b, = A~BT* s i n  4 r ci = 2A~ c t g  2 q~, ( t  - -  e?) Ai," 

st = V ~ ,  l, = [A~ s i n 2 %  d- A~A~(t --  et~)]At (~8 = 22); 

fo r  ~8~• = 12 t2  

2 2 - - 4  2 b~ = A1A2Bi cos (p~ s in  2 (Pl, 

t /A act_ 2 "-~ 

st = ] / ~ ,  li = A1A~.At cos qh s in  % (~8 = 12, 21); 

fo r  ~6~u ---- t t 2 2 ,  2 2 t t  

b~ -= A~A~B~ cos ( h s  in2 (P~, c~ ---- - -  2A~A2 

for ~6~tU = t l t 2 ,  1 2 t t  

b~ = A~A2BT 4 cos  3 qD~ s in  q~, c~ = A~ (A~ tg ~ q~ - -  A~) (1  - -  e~) 5~; 

for  ~ •  ----- t222, 22t2 

b~ --- A~A~B~ ~ cos qh s ina qh, ci = A~ (A~ ctg  ~ ~ - -  A~) (1 - -  e~) 5~. 

Here 

B~ A~cos z % - F A ~ s i n  2q~; At = [B~ H- ~ "- ---- A1A~(I - -  e~) ] - i .  

The formulas for the effective characteristics <b~5~K>, <s$~>, and <s are valid 
for an arbitrary transverse cross section. The obliquely symmetric portion of the effective 
characteristics is equal to zero because of the symmetry of the elliptic sectional cross 
section under consideration here, relative to the middle surface of the cell. 

Let us note that in the particular cases of rectangular, rhombic, and triangular mesh 
shells, the formulas which follow out of (4.1), within the framework of the theory of elas- 
ticity, were derived in [16], while within the framework of the thermal conductivity problem 
these formulas were derived in [17]. 

The author wishes to express his gratitude to V. Z. Parton and B. A. Kudryavtsev for 
his assistance in this study. 
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